

$m \subset m \subset$

Munich Center for Machine Learning

Normalizing Flows for Interventional Density Estimation

Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel

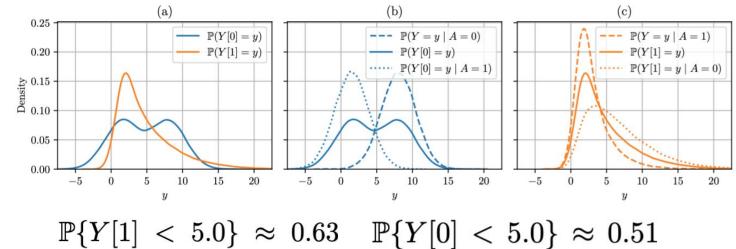
LMU Munich & Munich Center for Machine Learning (MCML), Munich, Germany

ICML 2023, Short Presentation

Introduction: Efficient interventional density estimation

 Making decisions based on averaged causal quantities can be misleading and, in some applications, even dangerous

 $\mathbb{E}(Y[0]) = \mathbb{E}(Y[1]) \approx 4.77$ $\operatorname{var}(Y[0]) = \operatorname{var}(Y[1]) \approx 4.06$



Given observational dataset of:

- x covariates
- Problem formulation
- A binary treatments
- continuous (factual) outcomes

we want to flexibly and efficiently estimate **interventional density** (density of the potential outcomes)

$$\mathbb{P}(Y[a] = y) = \mathbb{E}_{X \sim \mathbb{P}(X)} (\mathbb{P}(Y = y \mid X, A = a))$$

Introduction: Task complexity – Assumptions

- Traditional density estimation is non-applicable for **Interventional Density Estimation** (IDE), as we do not have samples from interventional distributions (i.e., the fundamental problem of causal inference)
- Density is a **functional, infinitely-dimensional target estimand**, and, hence, standard estimation is semi-parametric efficiency theory (with influence functions) is not applicable.
 - Choice of the nuisance parameters on practice: conditional expectations vs. conditional densities?

Potential outcomes framework (Neuman-Rubin)¹

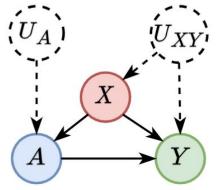
Consistency. If A = a is a treatment for some patient, then Y = Y[a]

Identifiability assumptions

Why

hard?

- **Positivity (Overlap).** There is always a non-zero probability of receiving/not receiving any treatment, conditioning on the covariates: $\epsilon > 0$, $\mathbb{P}(1 - \epsilon \ge \pi_a(X) \ge \epsilon) = 1$
 - **Exchangeability (Ignorability).** Current treatment is independent of the potential outcome, conditioning on the covariates $A \perp Y[a] \mid X$ for all a.



Introduction: Related work - Research gap – Our contributions

	Method	Parametric	Estimator type	Efficiency wrt.	Base density model	Proper density	Universal	
Related	Kim et al. (2018)	semi-parametric	A-IPTW	L_1 distance	kernel density estimation (KDE)	×	1	
	Muandet et al. (2021)	non-parametric	plug-in	_	distributional kernel mean embeddings (DKME)	×	1	
methods	Kennedy et al. (2023)	semi- / fully-parametric	A-IPTW	moment condition	exponential family	1	×	
methodo					truncated series (TS)	×	1	
	INFs (this paper)	fully-parametric	A-IPTW	moment condition	normalizing flows (NFs)	1	1	

A-IPTW: augmented inverse propensity of treatment weighted

Our

contributions

Research Existing methods for IDE are either non- or semi-parametric. Our work is the first to propose a **universal fully-parametric**, deep learning method for IDE, with proper density. gap

> **Interventional Normalizing Flows (INFs)** are first proper fully-parametric, deep learning method for interventional density estimation:

- We extend the results of (Kennedy et al., 2023)¹ and derive a tractable optimization problem with a one-step bias correction for efficient and doubly robust estimation. This allows for an effective two-step training procedure.
- We demonstrate in various experiments that INFs are highly expressive and effective. A major advantage owed to the parametric form is that our INFs scale well to both large and high-dimensional datasets.

Kennedv. E. H., Balakrishnan, S., and Wasserman, L. Semi-parametric counterfactual density estimation. Biometrika, 2023.

Target: interventional density $\mathbb{P}(Y[a] = y) = \underset{X \sim \mathbb{P}(X)}{\mathbb{E}} (\mathbb{P}(Y = y \mid X, A = a))$ **One-step IDE**

Two-step IDE

¹ Kennedy, E. H., Balakrishnan, S., and Wasserman, L. Semi-parametric counterfactual density estimation. Biometrika, 2023.

Target: interventional density $\mathbb{P}(Y[a] = y) = \mathbb{E}_{X \sim \mathbb{P}(X)} (\mathbb{P}(Y = y \mid X, A = a))$

One-step • Plug-in estimator:

 $\hat{\mathbb{P}}^{\mathrm{PI}}(Y[a] = y) = \mathbb{P}_n\{\hat{\mathbb{P}}(Y = y \mid X, A = a)\}.$

Two-step IDE

¹ Kennedy, E. H., Balakrishnan, S., and Wasserman, L. Semi-parametric counterfactual density estimation. Biometrika, 2023.

Target: interventional density $\mathbb{P}(Y[a] = y) = \mathbb{E}_{X \sim \mathbb{P}(X)} (\mathbb{P}(Y = y \mid X, A = a))$

One-step • Plug-in estimator:

 $\hat{\mathbb{P}}^{\mathrm{PI}}(Y[a] = y) = \mathbb{P}_n\{\hat{\mathbb{P}}(Y = y \mid X, A = a)\}.$

Target: projection parameters $\hat{\beta}_a = \underset{\beta_a}{\arg \min \operatorname{KL}} \left(\mathbb{P}(Y[a]) \mid g(\cdot; \beta_a) \right) = \underset{\beta_a}{\arg \min} \underset{Y^a \sim \mathbb{P}(Y[a])}{\operatorname{E}} \left(-\log g(Y^a; \beta_a) \right)$ \iff solving a moment equation $m(\beta_a) = \underset{Y^a \sim \mathbb{P}(Y[a])}{\mathbb{E}} \underbrace{T(Y^a; \beta_a)}_{Y^a \sim \mathbb{P}(Y[a])} \stackrel{!=0}{=} 0$ Score function: $T(Y; \beta_a) = -\nabla_{\beta_a} \log g(Y; \beta_a)$

Two-step IDE

Target: interventional density $\mathbb{P}(Y[a] = y) = \underset{X \sim \mathbb{P}(X)}{\mathbb{E}} (\mathbb{P}(Y = y \mid X, A = a))$

One-step
• Plug-in estimator:

 $\hat{\mathbb{P}}^{\mathrm{PI}}(Y[a] = y) = \mathbb{P}_n\{\hat{\mathbb{P}}(Y = y \mid X, A = a)\}.$

Target: projection parameters $\hat{\beta}_{a} = \operatorname*{arg\,min}_{\beta_{a}} \operatorname{KL}\left(\mathbb{P}(Y[a]) \mid g(\cdot;\beta_{a})\right) = \operatorname*{arg\,min}_{\beta_{a}} \underbrace{\mathbb{E}}_{Y^{a} \sim \mathbb{P}(Y[a])}\left(-\log g(Y^{a};\beta_{a})\right)$ \Leftrightarrow solving a moment equation $m(\beta_{a}) = \underbrace{\mathbb{E}}_{Y^{a} \sim \mathbb{P}(Y[a])} T(Y^{a};\beta_{a}) \stackrel{!}{=} 0$ Score function: $\hat{\mathbb{P}}^{CA}(Y[a]) = y) = g(y; \hat{\beta}_{a}^{PI}) \qquad \hat{m}^{PI}(\beta_{a}) = \underbrace{\mathbb{E}}_{Y^{a} \sim \mathbb{P}_{n}\{\hat{\mathbb{P}}(Y|X,A=a)\}} T(Y^{a};\beta_{a}) \stackrel{!}{=} 0$

Two-step IDE

IDE

Target: interventional density $\mathbb{P}(Y[a] = y) = \underset{X \sim \mathbb{P}(X)}{\mathbb{E}} (\mathbb{P}(Y = y \mid X, A = a))$

One-step • Plug-in estimator:

 $\hat{\mathbb{P}}^{\mathrm{PI}}(Y[a] = y) = \mathbb{P}_n \{ \hat{\mathbb{P}}(Y = y \mid X, A = a) \}.$

Target: projection parameters $\hat{\beta}_{a} = \operatorname*{arg\,min}_{\beta_{a}} \operatorname{KL}\left(\mathbb{P}(Y[a]) \mid g(\cdot;\beta_{a})\right) = \operatorname*{arg\,min}_{\beta_{a}} \underbrace{\mathbb{E}}_{Y^{a} \sim \mathbb{P}(Y[a])}\left(-\log g(Y^{a};\beta_{a})\right)$ \iff solving a moment equation $m(\beta_{a}) = \underbrace{\mathbb{E}}_{Y^{a} \sim \mathbb{P}(Y[a])} T(Y^{a};\beta_{a}) \stackrel{!}{=} 0$ Score function: $\hat{\mathbb{P}}^{CA}(Y[a] = y) = g(y; \hat{\beta}_{a}^{PI}) \qquad \hat{m}^{PI}(\beta_{a}) = \underbrace{\mathbb{E}}_{\gamma^{a} \sim \mathbb{P}(Y[a])} T(Y^{a};\beta_{a}) \stackrel{!}{=} 0$

Two-step IDE

IDE

• Augmented inverse propensity of treatment weighted (A-IPTW)
estimator:
$$\hat{\mathbb{P}}^{A-IPTW}(Y[a] = y) = g(y; \hat{\beta}_{a}^{A-IPTW}) \qquad \hat{m}^{A-IPTW}(\beta_{a}) = \hat{m}^{PI}(\beta_{a}) + \mathbb{P}_{n}\{\phi_{a}(T(Y; \beta_{a}); \hat{\mathbb{P}})\} \stackrel{!}{=} 0,$$
efficient influence function: $\phi_{a}(T; \mathbb{P}) = \frac{\mathbb{I}(A = a)}{\pi_{a}(X)} (T - \mathbb{E}(T \mid X, A = a)) + \mathbb{E}(T \mid X, A = a) - \mathbb{E}_{X \sim \mathbb{P}(X)}(\mathbb{E}(T \mid X, A = a))$

Target: interventional density $\mathbb{P}(Y[a] = y) = \underset{X \sim \mathbb{P}(X)}{\mathbb{E}} (\mathbb{P}(Y = y \mid X, A = a))$

One-step • Plug-in estimator:

IDE

IDE

 $\hat{\mathbb{P}}^{\mathrm{PI}}(Y[a] = y) = \mathbb{P}_n \{ \hat{\mathbb{P}}(Y = y \mid X, A = a) \}.$

Target: projection parameters $\hat{\beta}_a = \operatorname*{arg\,min}_{\beta_a} \operatorname{KL}\left(\mathbb{P}(Y[a]) \mid g(\cdot;\beta_a)\right) = \operatorname*{arg\,min}_{\beta_a} \underbrace{\mathbb{E}}_{Y^a \sim \mathbb{P}(Y[a])} \left(-\log g(Y^a;\beta_a)\right) = \operatorname{arg\,min}_{\beta_a} \underbrace{\mathbb{E}}_{Y^a \sim \mathbb{P}(Y[a])} \left(-\log g(Y^a;\beta_a)\right) = \operatorname{arg\,min}_{Y^a \sim \mathbb{P}(Y[a])} \left(-\log g(Y^$ • Covariate-adjusted estimator: $T(Y; \beta_a) = -\nabla_{\beta_a} \log g(Y; \beta_a)$ $\hat{\mathbb{P}}^{CA}(Y[a] = y) = g(y; \hat{\beta}_a^{PI}) \qquad \hat{m}^{PI}(\beta_a) = \underset{Y^a \sim \mathbb{P}_n \{\hat{\mathbb{P}}(Y | X, A=a)\}}{\mathbb{E}} \frac{T(Y^a; \beta_a)}{T(Y^a; \beta_a)} \stackrel{!}{=} 0$ Two-step • Augmented inverse propensity of treatment weighted (A-IPTW) estimator: $\hat{\mathbb{P}}^{\text{A-IPTW}}(Y[a]=y)=g(y;\hat{eta}_{a}^{\text{A-IPTW}}) \qquad \hat{m}^{\text{A-IPTW}}(eta_{a})=\hat{m}^{ ext{PI}}(eta_{a})+\mathbb{P}_{n}\{\phi_{a}(T(Y;eta_{a});\hat{\mathbb{P}})\}\stackrel{!}{=}0,$ efficient influence function: $\phi_a(T; \mathbb{P}) = \frac{\mathbb{1}(A=a)}{\pi_*(X)} \left(T - \mathbb{E}(T \mid X, A=a) \right) + \mathbb{E}(T \mid X, A=a) - \mathbb{E}_{X \sim \mathbb{P}(X)} (\mathbb{E}(T \mid X, A=a))$

INFs: Novel efficient optimization objective

A-IPTW estimator = solution of the multivariate system of equations:

Proposed by (Kennedy et al., 2023)¹

$$\hat{m}^{\text{A-IPTW}}(\beta_a) = \hat{m}^{\text{PI}}(\beta_a) + \mathbb{P}_n\left\{\phi_a(T(Y;\beta_a);\hat{\mathbb{P}})\right\} \stackrel{!}{=} 0$$

$$\phi_a(T;\mathbb{P}) = \frac{\mathbb{I}(A=a)}{\pi_a(X)} \left(T - \mathbb{E}(T \mid X, A=a)\right) + \mathbb{E}(T \mid X, A=a) - \mathbb{E}_{X \sim \mathbb{P}(X)}(\mathbb{E}(T \mid X, A=a)).$$

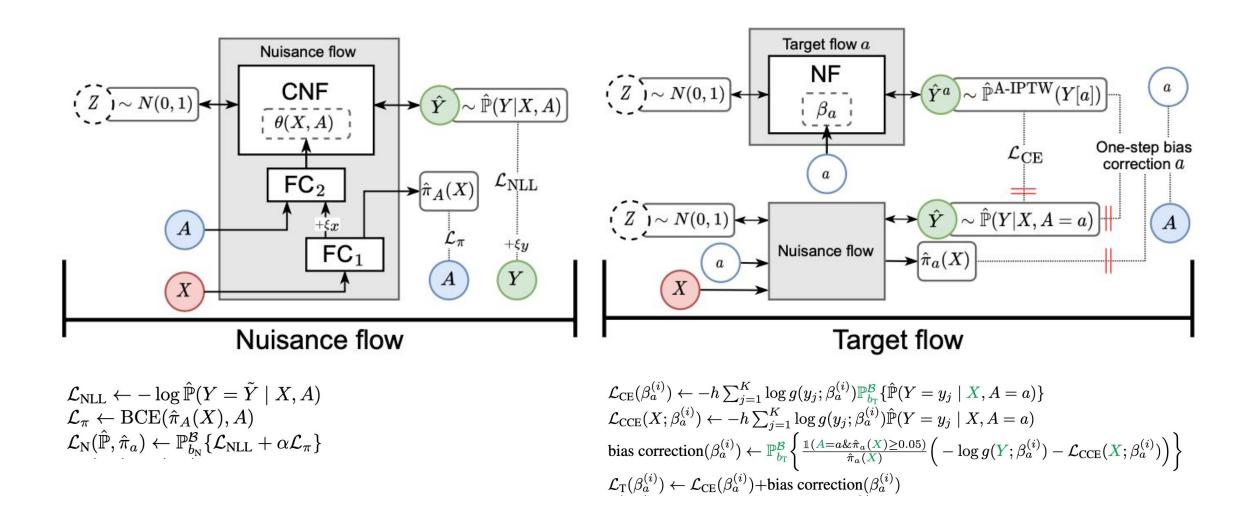
A-IPTW estimator = solution of the optimization task:

$$\hat{\beta}_{a}^{\text{A-IPTW}} = \underset{\beta_{a}}{\operatorname{arg\,min}} \left[\underbrace{\mathbb{E}}_{\substack{Y^{a} \sim \mathbb{P}_{n}\{\hat{\mathbb{P}}(Y|\boldsymbol{X}, A=a)\}}} \left(-\log g(Y^{a}; \beta_{a}) \right) \right]_{\text{cross-entropy loss}} - \underbrace{\mathbb{P}_{n}\left\{ \frac{\mathbb{1}(A=a)}{\hat{\pi}_{a}(\boldsymbol{X})} \left(\log g(Y; \beta_{a}) - \underbrace{\mathbb{E}}_{\substack{Y \sim \hat{\mathbb{P}}(Y|\boldsymbol{X}, A=a)}} \left(\log g(Y; \beta_{a}) \right) \right) \right\}}_{\text{one-step bias correction}} \right]$$

Our idea

Kennedy, E. H., Balakrishnan, S., and Wasserman, L. Semi-parametric counterfactual density estimation. Biometrika, 2023.

INFs: Novel architecture – Losses



Experiments: Datasets – Results

 We evaluate INFs based on 1 synthetic, 77 + 24 + 2 semi-synthetic and 1 real-world datasets

Datasets

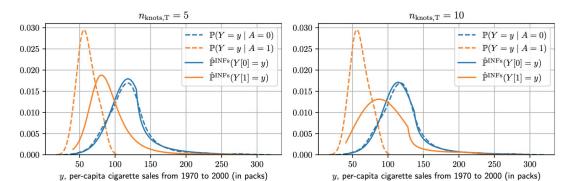
- Only synthetic and semi-synthetic data have ground-truth potential outcomes; real-world evaluation is a proof of concept
 - We compared test log-probability for each potential outcome (higher is better)

INFs achieve superior performance and scales well:

ACIC 2016 & 2018 datasets

Results

	ACIC 201	6 (77 datasets)	ACIC 2018 (24 datasets)	
	% best _{in}	% best _{out}	% best _{in}	% best _{out}
TARNet*	3.90%	6.23%	7.08%	7.50%
MDNs	28.96%	29.35%	21.25%	18.75%
CNF [[≙] INFs w/o target flow]	14.42%	15.97%	14.17%	14.58%
KDE (Kim et al., 2018)	1.04%	1.04%	10.42%	9.58%
DKME (Muandet et al., 2021)	0.39%	0.78%	8.75%	10.83%
CNF+TS (Kennedy et al., 2023)	8.18%	8.96%	5.83%	5.42%
INFs w/o bias corr	5.45%	7.27%	4.58%	5.42%
INFs (main)	37.66%	30.39%	27.92%	27.92%
Higher = better (best in bold)				



California's Tobacco Control Program

Conclusion

For decision-making in personalized medicine, it is not only important to know **how likely it is that treatments achieve the desired outcome**.

To address this, we propose a novel method for **estimating the density of potential outcomes**. Specifically, we present our **Interventional Normalizing Flows**, which is the first, fully-parametric, **deep learning method** for this purpose.

Source Code: github.com/Valentyn1997/INFs ArXiv Paper: arxiv.org/abs/2209.06203